\(\int \frac {\sec ^2(c+d x) (B \sec (c+d x)+C \sec ^2(c+d x))}{(a+b \sec (c+d x))^{5/2}} \, dx\) [850]

   Optimal result
   Rubi [A] (verified)
   Mathematica [B] (warning: unable to verify)
   Maple [B] (warning: unable to verify)
   Fricas [F]
   Sympy [F]
   Maxima [F(-1)]
   Giac [F]
   Mupad [F(-1)]

Optimal result

Integrand size = 42, antiderivative size = 417 \[ \int \frac {\sec ^2(c+d x) \left (B \sec (c+d x)+C \sec ^2(c+d x)\right )}{(a+b \sec (c+d x))^{5/2}} \, dx=\frac {2 \left (2 a^3 b B-6 a b^3 B-8 a^4 C+15 a^2 b^2 C-3 b^4 C\right ) \cot (c+d x) E\left (\arcsin \left (\frac {\sqrt {a+b \sec (c+d x)}}{\sqrt {a+b}}\right )|\frac {a+b}{a-b}\right ) \sqrt {\frac {b (1-\sec (c+d x))}{a+b}} \sqrt {-\frac {b (1+\sec (c+d x))}{a-b}}}{3 (a-b) b^4 (a+b)^{3/2} d}+\frac {2 \left (2 a^2 b (B-3 C)-3 b^3 (B-C)-8 a^3 C+3 a b^2 (B+3 C)\right ) \cot (c+d x) \operatorname {EllipticF}\left (\arcsin \left (\frac {\sqrt {a+b \sec (c+d x)}}{\sqrt {a+b}}\right ),\frac {a+b}{a-b}\right ) \sqrt {\frac {b (1-\sec (c+d x))}{a+b}} \sqrt {-\frac {b (1+\sec (c+d x))}{a-b}}}{3 b^3 \sqrt {a+b} \left (a^2-b^2\right ) d}-\frac {2 a^2 (b B-a C) \tan (c+d x)}{3 b^2 \left (a^2-b^2\right ) d (a+b \sec (c+d x))^{3/2}}+\frac {2 a \left (2 a^2 b B-6 b^3 B-5 a^3 C+9 a b^2 C\right ) \tan (c+d x)}{3 b^2 \left (a^2-b^2\right )^2 d \sqrt {a+b \sec (c+d x)}} \]

[Out]

2/3*(2*B*a^3*b-6*B*a*b^3-8*C*a^4+15*C*a^2*b^2-3*C*b^4)*cot(d*x+c)*EllipticE((a+b*sec(d*x+c))^(1/2)/(a+b)^(1/2)
,((a+b)/(a-b))^(1/2))*(b*(1-sec(d*x+c))/(a+b))^(1/2)*(-b*(1+sec(d*x+c))/(a-b))^(1/2)/(a-b)/b^4/(a+b)^(3/2)/d+2
/3*(2*a^2*b*(B-3*C)-3*b^3*(B-C)-8*a^3*C+3*a*b^2*(B+3*C))*cot(d*x+c)*EllipticF((a+b*sec(d*x+c))^(1/2)/(a+b)^(1/
2),((a+b)/(a-b))^(1/2))*(b*(1-sec(d*x+c))/(a+b))^(1/2)*(-b*(1+sec(d*x+c))/(a-b))^(1/2)/b^3/(a^2-b^2)/d/(a+b)^(
1/2)-2/3*a^2*(B*b-C*a)*tan(d*x+c)/b^2/(a^2-b^2)/d/(a+b*sec(d*x+c))^(3/2)+2/3*a*(2*B*a^2*b-6*B*b^3-5*C*a^3+9*C*
a*b^2)*tan(d*x+c)/b^2/(a^2-b^2)^2/d/(a+b*sec(d*x+c))^(1/2)

Rubi [A] (verified)

Time = 1.18 (sec) , antiderivative size = 417, normalized size of antiderivative = 1.00, number of steps used = 6, number of rules used = 6, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.143, Rules used = {4157, 4113, 4165, 4090, 3917, 4089} \[ \int \frac {\sec ^2(c+d x) \left (B \sec (c+d x)+C \sec ^2(c+d x)\right )}{(a+b \sec (c+d x))^{5/2}} \, dx=-\frac {2 a^2 (b B-a C) \tan (c+d x)}{3 b^2 d \left (a^2-b^2\right ) (a+b \sec (c+d x))^{3/2}}+\frac {2 \left (-8 a^3 C+2 a^2 b (B-3 C)+3 a b^2 (B+3 C)-3 b^3 (B-C)\right ) \cot (c+d x) \sqrt {\frac {b (1-\sec (c+d x))}{a+b}} \sqrt {-\frac {b (\sec (c+d x)+1)}{a-b}} \operatorname {EllipticF}\left (\arcsin \left (\frac {\sqrt {a+b \sec (c+d x)}}{\sqrt {a+b}}\right ),\frac {a+b}{a-b}\right )}{3 b^3 d \sqrt {a+b} \left (a^2-b^2\right )}+\frac {2 a \left (-5 a^3 C+2 a^2 b B+9 a b^2 C-6 b^3 B\right ) \tan (c+d x)}{3 b^2 d \left (a^2-b^2\right )^2 \sqrt {a+b \sec (c+d x)}}+\frac {2 \left (-8 a^4 C+2 a^3 b B+15 a^2 b^2 C-6 a b^3 B-3 b^4 C\right ) \cot (c+d x) \sqrt {\frac {b (1-\sec (c+d x))}{a+b}} \sqrt {-\frac {b (\sec (c+d x)+1)}{a-b}} E\left (\arcsin \left (\frac {\sqrt {a+b \sec (c+d x)}}{\sqrt {a+b}}\right )|\frac {a+b}{a-b}\right )}{3 b^4 d (a-b) (a+b)^{3/2}} \]

[In]

Int[(Sec[c + d*x]^2*(B*Sec[c + d*x] + C*Sec[c + d*x]^2))/(a + b*Sec[c + d*x])^(5/2),x]

[Out]

(2*(2*a^3*b*B - 6*a*b^3*B - 8*a^4*C + 15*a^2*b^2*C - 3*b^4*C)*Cot[c + d*x]*EllipticE[ArcSin[Sqrt[a + b*Sec[c +
 d*x]]/Sqrt[a + b]], (a + b)/(a - b)]*Sqrt[(b*(1 - Sec[c + d*x]))/(a + b)]*Sqrt[-((b*(1 + Sec[c + d*x]))/(a -
b))])/(3*(a - b)*b^4*(a + b)^(3/2)*d) + (2*(2*a^2*b*(B - 3*C) - 3*b^3*(B - C) - 8*a^3*C + 3*a*b^2*(B + 3*C))*C
ot[c + d*x]*EllipticF[ArcSin[Sqrt[a + b*Sec[c + d*x]]/Sqrt[a + b]], (a + b)/(a - b)]*Sqrt[(b*(1 - Sec[c + d*x]
))/(a + b)]*Sqrt[-((b*(1 + Sec[c + d*x]))/(a - b))])/(3*b^3*Sqrt[a + b]*(a^2 - b^2)*d) - (2*a^2*(b*B - a*C)*Ta
n[c + d*x])/(3*b^2*(a^2 - b^2)*d*(a + b*Sec[c + d*x])^(3/2)) + (2*a*(2*a^2*b*B - 6*b^3*B - 5*a^3*C + 9*a*b^2*C
)*Tan[c + d*x])/(3*b^2*(a^2 - b^2)^2*d*Sqrt[a + b*Sec[c + d*x]])

Rule 3917

Int[csc[(e_.) + (f_.)*(x_)]/Sqrt[csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_)], x_Symbol] :> Simp[-2*(Rt[a + b, 2]/(b*
f*Cot[e + f*x]))*Sqrt[(b*(1 - Csc[e + f*x]))/(a + b)]*Sqrt[(-b)*((1 + Csc[e + f*x])/(a - b))]*EllipticF[ArcSin
[Sqrt[a + b*Csc[e + f*x]]/Rt[a + b, 2]], (a + b)/(a - b)], x] /; FreeQ[{a, b, e, f}, x] && NeQ[a^2 - b^2, 0]

Rule 4089

Int[(csc[(e_.) + (f_.)*(x_)]*(csc[(e_.) + (f_.)*(x_)]*(B_.) + (A_)))/Sqrt[csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_)
], x_Symbol] :> Simp[-2*(A*b - a*B)*Rt[a + b*(B/A), 2]*Sqrt[b*((1 - Csc[e + f*x])/(a + b))]*(Sqrt[(-b)*((1 + C
sc[e + f*x])/(a - b))]/(b^2*f*Cot[e + f*x]))*EllipticE[ArcSin[Sqrt[a + b*Csc[e + f*x]]/Rt[a + b*(B/A), 2]], (a
*A + b*B)/(a*A - b*B)], x] /; FreeQ[{a, b, e, f, A, B}, x] && NeQ[a^2 - b^2, 0] && EqQ[A^2 - B^2, 0]

Rule 4090

Int[(csc[(e_.) + (f_.)*(x_)]*(csc[(e_.) + (f_.)*(x_)]*(B_.) + (A_)))/Sqrt[csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_)
], x_Symbol] :> Dist[A - B, Int[Csc[e + f*x]/Sqrt[a + b*Csc[e + f*x]], x], x] + Dist[B, Int[Csc[e + f*x]*((1 +
 Csc[e + f*x])/Sqrt[a + b*Csc[e + f*x]]), x], x] /; FreeQ[{a, b, e, f, A, B}, x] && NeQ[a^2 - b^2, 0] && NeQ[A
^2 - B^2, 0]

Rule 4113

Int[csc[(e_.) + (f_.)*(x_)]^3*(csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_))^(m_)*(csc[(e_.) + (f_.)*(x_)]*(B_.) + (A_
)), x_Symbol] :> Simp[(-a^2)*(A*b - a*B)*Cot[e + f*x]*((a + b*Csc[e + f*x])^(m + 1)/(b^2*f*(m + 1)*(a^2 - b^2)
)), x] + Dist[1/(b^2*(m + 1)*(a^2 - b^2)), Int[Csc[e + f*x]*(a + b*Csc[e + f*x])^(m + 1)*Simp[a*b*(A*b - a*B)*
(m + 1) - (A*b - a*B)*(a^2 + b^2*(m + 1))*Csc[e + f*x] + b*B*(m + 1)*(a^2 - b^2)*Csc[e + f*x]^2, x], x], x] /;
 FreeQ[{a, b, e, f, A, B}, x] && NeQ[A*b - a*B, 0] && NeQ[a^2 - b^2, 0] && LtQ[m, -1]

Rule 4157

Int[((a_.) + csc[(e_.) + (f_.)*(x_)]*(b_.))^(m_.)*((A_.) + csc[(e_.) + (f_.)*(x_)]*(B_.) + csc[(e_.) + (f_.)*(
x_)]^2*(C_.))*((c_.) + csc[(e_.) + (f_.)*(x_)]*(d_.))^(n_.), x_Symbol] :> Dist[1/b^2, Int[(a + b*Csc[e + f*x])
^(m + 1)*(c + d*Csc[e + f*x])^n*(b*B - a*C + b*C*Csc[e + f*x]), x], x] /; FreeQ[{a, b, c, d, e, f, A, B, C, m,
 n}, x] && EqQ[A*b^2 - a*b*B + a^2*C, 0]

Rule 4165

Int[csc[(e_.) + (f_.)*(x_)]*((A_.) + csc[(e_.) + (f_.)*(x_)]*(B_.) + csc[(e_.) + (f_.)*(x_)]^2*(C_.))*(csc[(e_
.) + (f_.)*(x_)]*(b_.) + (a_))^(m_), x_Symbol] :> Simp[(-(A*b^2 - a*b*B + a^2*C))*Cot[e + f*x]*((a + b*Csc[e +
 f*x])^(m + 1)/(b*f*(m + 1)*(a^2 - b^2))), x] + Dist[1/(b*(m + 1)*(a^2 - b^2)), Int[Csc[e + f*x]*(a + b*Csc[e
+ f*x])^(m + 1)*Simp[b*(a*A - b*B + a*C)*(m + 1) - (A*b^2 - a*b*B + a^2*C + b*(A*b - a*B + b*C)*(m + 1))*Csc[e
 + f*x], x], x], x] /; FreeQ[{a, b, e, f, A, B, C}, x] && LtQ[m, -1] && NeQ[a^2 - b^2, 0]

Rubi steps \begin{align*} \text {integral}& = \int \frac {\sec ^3(c+d x) (B+C \sec (c+d x))}{(a+b \sec (c+d x))^{5/2}} \, dx \\ & = -\frac {2 a^2 (b B-a C) \tan (c+d x)}{3 b^2 \left (a^2-b^2\right ) d (a+b \sec (c+d x))^{3/2}}-\frac {2 \int \frac {\sec (c+d x) \left (-\frac {3}{2} a b (b B-a C)-\frac {1}{2} \left (2 a^2-3 b^2\right ) (b B-a C) \sec (c+d x)-\frac {3}{2} b \left (a^2-b^2\right ) C \sec ^2(c+d x)\right )}{(a+b \sec (c+d x))^{3/2}} \, dx}{3 b^2 \left (a^2-b^2\right )} \\ & = -\frac {2 a^2 (b B-a C) \tan (c+d x)}{3 b^2 \left (a^2-b^2\right ) d (a+b \sec (c+d x))^{3/2}}+\frac {2 a \left (2 a^2 b B-6 b^3 B-5 a^3 C+9 a b^2 C\right ) \tan (c+d x)}{3 b^2 \left (a^2-b^2\right )^2 d \sqrt {a+b \sec (c+d x)}}+\frac {4 \int \frac {\sec (c+d x) \left (\frac {1}{4} b^2 \left (a^2 b B+3 b^3 B+2 a^3 C-6 a b^2 C\right )-\frac {1}{4} b \left (2 a^3 b B-6 a b^3 B-8 a^4 C+15 a^2 b^2 C-3 b^4 C\right ) \sec (c+d x)\right )}{\sqrt {a+b \sec (c+d x)}} \, dx}{3 b^3 \left (a^2-b^2\right )^2} \\ & = -\frac {2 a^2 (b B-a C) \tan (c+d x)}{3 b^2 \left (a^2-b^2\right ) d (a+b \sec (c+d x))^{3/2}}+\frac {2 a \left (2 a^2 b B-6 b^3 B-5 a^3 C+9 a b^2 C\right ) \tan (c+d x)}{3 b^2 \left (a^2-b^2\right )^2 d \sqrt {a+b \sec (c+d x)}}-\frac {\left (2 a^3 b B-6 a b^3 B-8 a^4 C+15 a^2 b^2 C-3 b^4 C\right ) \int \frac {\sec (c+d x) (1+\sec (c+d x))}{\sqrt {a+b \sec (c+d x)}} \, dx}{3 b^2 \left (a^2-b^2\right )^2}+\frac {\left (2 a^2 b (B-3 C)-3 b^3 (B-C)-8 a^3 C+3 a b^2 (B+3 C)\right ) \int \frac {\sec (c+d x)}{\sqrt {a+b \sec (c+d x)}} \, dx}{3 (a-b) b^2 (a+b)^2} \\ & = \frac {2 \left (2 a^3 b B-6 a b^3 B-8 a^4 C+15 a^2 b^2 C-3 b^4 C\right ) \cot (c+d x) E\left (\arcsin \left (\frac {\sqrt {a+b \sec (c+d x)}}{\sqrt {a+b}}\right )|\frac {a+b}{a-b}\right ) \sqrt {\frac {b (1-\sec (c+d x))}{a+b}} \sqrt {-\frac {b (1+\sec (c+d x))}{a-b}}}{3 (a-b) b^4 (a+b)^{3/2} d}+\frac {2 \left (2 a^2 b (B-3 C)-3 b^3 (B-C)-8 a^3 C+3 a b^2 (B+3 C)\right ) \cot (c+d x) \operatorname {EllipticF}\left (\arcsin \left (\frac {\sqrt {a+b \sec (c+d x)}}{\sqrt {a+b}}\right ),\frac {a+b}{a-b}\right ) \sqrt {\frac {b (1-\sec (c+d x))}{a+b}} \sqrt {-\frac {b (1+\sec (c+d x))}{a-b}}}{3 (a-b) b^3 (a+b)^{3/2} d}-\frac {2 a^2 (b B-a C) \tan (c+d x)}{3 b^2 \left (a^2-b^2\right ) d (a+b \sec (c+d x))^{3/2}}+\frac {2 a \left (2 a^2 b B-6 b^3 B-5 a^3 C+9 a b^2 C\right ) \tan (c+d x)}{3 b^2 \left (a^2-b^2\right )^2 d \sqrt {a+b \sec (c+d x)}} \\ \end{align*}

Mathematica [B] (warning: unable to verify)

Leaf count is larger than twice the leaf count of optimal. \(3920\) vs. \(2(417)=834\).

Time = 25.89 (sec) , antiderivative size = 3920, normalized size of antiderivative = 9.40 \[ \int \frac {\sec ^2(c+d x) \left (B \sec (c+d x)+C \sec ^2(c+d x)\right )}{(a+b \sec (c+d x))^{5/2}} \, dx=\text {Result too large to show} \]

[In]

Integrate[(Sec[c + d*x]^2*(B*Sec[c + d*x] + C*Sec[c + d*x]^2))/(a + b*Sec[c + d*x])^(5/2),x]

[Out]

((b + a*Cos[c + d*x])^3*Sec[c + d*x]^3*((2*(-2*a^3*b*B + 6*a*b^3*B + 8*a^4*C - 15*a^2*b^2*C + 3*b^4*C)*Sin[c +
 d*x])/(3*b^3*(-a^2 + b^2)^2) - (2*(a*b*B*Sin[c + d*x] - a^2*C*Sin[c + d*x]))/(3*b*(-a^2 + b^2)*(b + a*Cos[c +
 d*x])^2) - (2*(-(a^3*b*B*Sin[c + d*x]) + 5*a*b^3*B*Sin[c + d*x] + 4*a^4*C*Sin[c + d*x] - 8*a^2*b^2*C*Sin[c +
d*x]))/(3*b^2*(-a^2 + b^2)^2*(b + a*Cos[c + d*x]))))/(d*(a + b*Sec[c + d*x])^(5/2)) - (2*(b + a*Cos[c + d*x])^
2*((2*a^3*B)/(3*b*(-a^2 + b^2)^2*Sqrt[b + a*Cos[c + d*x]]*Sqrt[Sec[c + d*x]]) - (2*a*b*B)/((-a^2 + b^2)^2*Sqrt
[b + a*Cos[c + d*x]]*Sqrt[Sec[c + d*x]]) + (5*a^2*C)/((-a^2 + b^2)^2*Sqrt[b + a*Cos[c + d*x]]*Sqrt[Sec[c + d*x
]]) - (8*a^4*C)/(3*b^2*(-a^2 + b^2)^2*Sqrt[b + a*Cos[c + d*x]]*Sqrt[Sec[c + d*x]]) - (b^2*C)/((-a^2 + b^2)^2*S
qrt[b + a*Cos[c + d*x]]*Sqrt[Sec[c + d*x]]) - (5*a^2*B*Sqrt[Sec[c + d*x]])/(3*(-a^2 + b^2)^2*Sqrt[b + a*Cos[c
+ d*x]]) + (2*a^4*B*Sqrt[Sec[c + d*x]])/(3*b^2*(-a^2 + b^2)^2*Sqrt[b + a*Cos[c + d*x]]) + (b^2*B*Sqrt[Sec[c +
d*x]])/((-a^2 + b^2)^2*Sqrt[b + a*Cos[c + d*x]]) - (8*a^5*C*Sqrt[Sec[c + d*x]])/(3*b^3*(-a^2 + b^2)^2*Sqrt[b +
 a*Cos[c + d*x]]) + (17*a^3*C*Sqrt[Sec[c + d*x]])/(3*b*(-a^2 + b^2)^2*Sqrt[b + a*Cos[c + d*x]]) - (3*a*b*C*Sqr
t[Sec[c + d*x]])/((-a^2 + b^2)^2*Sqrt[b + a*Cos[c + d*x]]) - (2*a^2*B*Cos[2*(c + d*x)]*Sqrt[Sec[c + d*x]])/((-
a^2 + b^2)^2*Sqrt[b + a*Cos[c + d*x]]) + (2*a^4*B*Cos[2*(c + d*x)]*Sqrt[Sec[c + d*x]])/(3*b^2*(-a^2 + b^2)^2*S
qrt[b + a*Cos[c + d*x]]) - (8*a^5*C*Cos[2*(c + d*x)]*Sqrt[Sec[c + d*x]])/(3*b^3*(-a^2 + b^2)^2*Sqrt[b + a*Cos[
c + d*x]]) + (5*a^3*C*Cos[2*(c + d*x)]*Sqrt[Sec[c + d*x]])/(b*(-a^2 + b^2)^2*Sqrt[b + a*Cos[c + d*x]]) - (a*b*
C*Cos[2*(c + d*x)]*Sqrt[Sec[c + d*x]])/((-a^2 + b^2)^2*Sqrt[b + a*Cos[c + d*x]]))*Sec[c + d*x]^(5/2)*Sqrt[Cos[
(c + d*x)/2]^2*Sec[c + d*x]]*(2*(a + b)*(-2*a^3*b*B + 6*a*b^3*B + 8*a^4*C - 15*a^2*b^2*C + 3*b^4*C)*Sqrt[Cos[c
 + d*x]/(1 + Cos[c + d*x])]*Sqrt[(b + a*Cos[c + d*x])/((a + b)*(1 + Cos[c + d*x]))]*EllipticE[ArcSin[Tan[(c +
d*x)/2]], (a - b)/(a + b)] - 2*b*(a + b)*(3*a*b^2*(B - 3*C) + 8*a^3*C + 3*b^3*(B + C) - 2*a^2*b*(B + 3*C))*Sqr
t[Cos[c + d*x]/(1 + Cos[c + d*x])]*Sqrt[(b + a*Cos[c + d*x])/((a + b)*(1 + Cos[c + d*x]))]*EllipticF[ArcSin[Ta
n[(c + d*x)/2]], (a - b)/(a + b)] + (-2*a^3*b*B + 6*a*b^3*B + 8*a^4*C - 15*a^2*b^2*C + 3*b^4*C)*Cos[c + d*x]*(
b + a*Cos[c + d*x])*Sec[(c + d*x)/2]^2*Tan[(c + d*x)/2]))/(3*b^3*(a^2 - b^2)^2*d*Sqrt[Sec[(c + d*x)/2]^2]*(a +
 b*Sec[c + d*x])^(5/2)*(-1/3*(a*Sqrt[Cos[(c + d*x)/2]^2*Sec[c + d*x]]*Sin[c + d*x]*(2*(a + b)*(-2*a^3*b*B + 6*
a*b^3*B + 8*a^4*C - 15*a^2*b^2*C + 3*b^4*C)*Sqrt[Cos[c + d*x]/(1 + Cos[c + d*x])]*Sqrt[(b + a*Cos[c + d*x])/((
a + b)*(1 + Cos[c + d*x]))]*EllipticE[ArcSin[Tan[(c + d*x)/2]], (a - b)/(a + b)] - 2*b*(a + b)*(3*a*b^2*(B - 3
*C) + 8*a^3*C + 3*b^3*(B + C) - 2*a^2*b*(B + 3*C))*Sqrt[Cos[c + d*x]/(1 + Cos[c + d*x])]*Sqrt[(b + a*Cos[c + d
*x])/((a + b)*(1 + Cos[c + d*x]))]*EllipticF[ArcSin[Tan[(c + d*x)/2]], (a - b)/(a + b)] + (-2*a^3*b*B + 6*a*b^
3*B + 8*a^4*C - 15*a^2*b^2*C + 3*b^4*C)*Cos[c + d*x]*(b + a*Cos[c + d*x])*Sec[(c + d*x)/2]^2*Tan[(c + d*x)/2])
)/(b^3*(a^2 - b^2)^2*(b + a*Cos[c + d*x])^(3/2)*Sqrt[Sec[(c + d*x)/2]^2]) + (Sqrt[Cos[(c + d*x)/2]^2*Sec[c + d
*x]]*Tan[(c + d*x)/2]*(2*(a + b)*(-2*a^3*b*B + 6*a*b^3*B + 8*a^4*C - 15*a^2*b^2*C + 3*b^4*C)*Sqrt[Cos[c + d*x]
/(1 + Cos[c + d*x])]*Sqrt[(b + a*Cos[c + d*x])/((a + b)*(1 + Cos[c + d*x]))]*EllipticE[ArcSin[Tan[(c + d*x)/2]
], (a - b)/(a + b)] - 2*b*(a + b)*(3*a*b^2*(B - 3*C) + 8*a^3*C + 3*b^3*(B + C) - 2*a^2*b*(B + 3*C))*Sqrt[Cos[c
 + d*x]/(1 + Cos[c + d*x])]*Sqrt[(b + a*Cos[c + d*x])/((a + b)*(1 + Cos[c + d*x]))]*EllipticF[ArcSin[Tan[(c +
d*x)/2]], (a - b)/(a + b)] + (-2*a^3*b*B + 6*a*b^3*B + 8*a^4*C - 15*a^2*b^2*C + 3*b^4*C)*Cos[c + d*x]*(b + a*C
os[c + d*x])*Sec[(c + d*x)/2]^2*Tan[(c + d*x)/2]))/(3*b^3*(a^2 - b^2)^2*Sqrt[b + a*Cos[c + d*x]]*Sqrt[Sec[(c +
 d*x)/2]^2]) - (2*Sqrt[Cos[(c + d*x)/2]^2*Sec[c + d*x]]*(((-2*a^3*b*B + 6*a*b^3*B + 8*a^4*C - 15*a^2*b^2*C + 3
*b^4*C)*Cos[c + d*x]*(b + a*Cos[c + d*x])*Sec[(c + d*x)/2]^4)/2 + ((a + b)*(-2*a^3*b*B + 6*a*b^3*B + 8*a^4*C -
 15*a^2*b^2*C + 3*b^4*C)*Sqrt[(b + a*Cos[c + d*x])/((a + b)*(1 + Cos[c + d*x]))]*EllipticE[ArcSin[Tan[(c + d*x
)/2]], (a - b)/(a + b)]*((Cos[c + d*x]*Sin[c + d*x])/(1 + Cos[c + d*x])^2 - Sin[c + d*x]/(1 + Cos[c + d*x])))/
Sqrt[Cos[c + d*x]/(1 + Cos[c + d*x])] - (b*(a + b)*(3*a*b^2*(B - 3*C) + 8*a^3*C + 3*b^3*(B + C) - 2*a^2*b*(B +
 3*C))*Sqrt[(b + a*Cos[c + d*x])/((a + b)*(1 + Cos[c + d*x]))]*EllipticF[ArcSin[Tan[(c + d*x)/2]], (a - b)/(a
+ b)]*((Cos[c + d*x]*Sin[c + d*x])/(1 + Cos[c + d*x])^2 - Sin[c + d*x]/(1 + Cos[c + d*x])))/Sqrt[Cos[c + d*x]/
(1 + Cos[c + d*x])] + ((a + b)*(-2*a^3*b*B + 6*a*b^3*B + 8*a^4*C - 15*a^2*b^2*C + 3*b^4*C)*Sqrt[Cos[c + d*x]/(
1 + Cos[c + d*x])]*EllipticE[ArcSin[Tan[(c + d*x)/2]], (a - b)/(a + b)]*(-((a*Sin[c + d*x])/((a + b)*(1 + Cos[
c + d*x]))) + ((b + a*Cos[c + d*x])*Sin[c + d*x])/((a + b)*(1 + Cos[c + d*x])^2)))/Sqrt[(b + a*Cos[c + d*x])/(
(a + b)*(1 + Cos[c + d*x]))] - (b*(a + b)*(3*a*b^2*(B - 3*C) + 8*a^3*C + 3*b^3*(B + C) - 2*a^2*b*(B + 3*C))*Sq
rt[Cos[c + d*x]/(1 + Cos[c + d*x])]*EllipticF[ArcSin[Tan[(c + d*x)/2]], (a - b)/(a + b)]*(-((a*Sin[c + d*x])/(
(a + b)*(1 + Cos[c + d*x]))) + ((b + a*Cos[c + d*x])*Sin[c + d*x])/((a + b)*(1 + Cos[c + d*x])^2)))/Sqrt[(b +
a*Cos[c + d*x])/((a + b)*(1 + Cos[c + d*x]))] - a*(-2*a^3*b*B + 6*a*b^3*B + 8*a^4*C - 15*a^2*b^2*C + 3*b^4*C)*
Cos[c + d*x]*Sec[(c + d*x)/2]^2*Sin[c + d*x]*Tan[(c + d*x)/2] - (-2*a^3*b*B + 6*a*b^3*B + 8*a^4*C - 15*a^2*b^2
*C + 3*b^4*C)*(b + a*Cos[c + d*x])*Sec[(c + d*x)/2]^2*Sin[c + d*x]*Tan[(c + d*x)/2] + (-2*a^3*b*B + 6*a*b^3*B
+ 8*a^4*C - 15*a^2*b^2*C + 3*b^4*C)*Cos[c + d*x]*(b + a*Cos[c + d*x])*Sec[(c + d*x)/2]^2*Tan[(c + d*x)/2]^2 -
(b*(a + b)*(3*a*b^2*(B - 3*C) + 8*a^3*C + 3*b^3*(B + C) - 2*a^2*b*(B + 3*C))*Sqrt[Cos[c + d*x]/(1 + Cos[c + d*
x])]*Sqrt[(b + a*Cos[c + d*x])/((a + b)*(1 + Cos[c + d*x]))]*Sec[(c + d*x)/2]^2)/(Sqrt[1 - Tan[(c + d*x)/2]^2]
*Sqrt[1 - ((a - b)*Tan[(c + d*x)/2]^2)/(a + b)]) + ((a + b)*(-2*a^3*b*B + 6*a*b^3*B + 8*a^4*C - 15*a^2*b^2*C +
 3*b^4*C)*Sqrt[Cos[c + d*x]/(1 + Cos[c + d*x])]*Sqrt[(b + a*Cos[c + d*x])/((a + b)*(1 + Cos[c + d*x]))]*Sec[(c
 + d*x)/2]^2*Sqrt[1 - ((a - b)*Tan[(c + d*x)/2]^2)/(a + b)])/Sqrt[1 - Tan[(c + d*x)/2]^2]))/(3*b^3*(a^2 - b^2)
^2*Sqrt[b + a*Cos[c + d*x]]*Sqrt[Sec[(c + d*x)/2]^2]) - ((2*(a + b)*(-2*a^3*b*B + 6*a*b^3*B + 8*a^4*C - 15*a^2
*b^2*C + 3*b^4*C)*Sqrt[Cos[c + d*x]/(1 + Cos[c + d*x])]*Sqrt[(b + a*Cos[c + d*x])/((a + b)*(1 + Cos[c + d*x]))
]*EllipticE[ArcSin[Tan[(c + d*x)/2]], (a - b)/(a + b)] - 2*b*(a + b)*(3*a*b^2*(B - 3*C) + 8*a^3*C + 3*b^3*(B +
 C) - 2*a^2*b*(B + 3*C))*Sqrt[Cos[c + d*x]/(1 + Cos[c + d*x])]*Sqrt[(b + a*Cos[c + d*x])/((a + b)*(1 + Cos[c +
 d*x]))]*EllipticF[ArcSin[Tan[(c + d*x)/2]], (a - b)/(a + b)] + (-2*a^3*b*B + 6*a*b^3*B + 8*a^4*C - 15*a^2*b^2
*C + 3*b^4*C)*Cos[c + d*x]*(b + a*Cos[c + d*x])*Sec[(c + d*x)/2]^2*Tan[(c + d*x)/2])*(-(Cos[(c + d*x)/2]*Sec[c
 + d*x]*Sin[(c + d*x)/2]) + Cos[(c + d*x)/2]^2*Sec[c + d*x]*Tan[c + d*x]))/(3*b^3*(a^2 - b^2)^2*Sqrt[b + a*Cos
[c + d*x]]*Sqrt[Sec[(c + d*x)/2]^2]*Sqrt[Cos[(c + d*x)/2]^2*Sec[c + d*x]])))

Maple [B] (warning: unable to verify)

Leaf count of result is larger than twice the leaf count of optimal. \(7754\) vs. \(2(387)=774\).

Time = 19.51 (sec) , antiderivative size = 7755, normalized size of antiderivative = 18.60

method result size
parts \(\text {Expression too large to display}\) \(7755\)
default \(\text {Expression too large to display}\) \(7823\)

[In]

int(sec(d*x+c)^2*(B*sec(d*x+c)+C*sec(d*x+c)^2)/(a+b*sec(d*x+c))^(5/2),x,method=_RETURNVERBOSE)

[Out]

result too large to display

Fricas [F]

\[ \int \frac {\sec ^2(c+d x) \left (B \sec (c+d x)+C \sec ^2(c+d x)\right )}{(a+b \sec (c+d x))^{5/2}} \, dx=\int { \frac {{\left (C \sec \left (d x + c\right )^{2} + B \sec \left (d x + c\right )\right )} \sec \left (d x + c\right )^{2}}{{\left (b \sec \left (d x + c\right ) + a\right )}^{\frac {5}{2}}} \,d x } \]

[In]

integrate(sec(d*x+c)^2*(B*sec(d*x+c)+C*sec(d*x+c)^2)/(a+b*sec(d*x+c))^(5/2),x, algorithm="fricas")

[Out]

integral((C*sec(d*x + c)^4 + B*sec(d*x + c)^3)*sqrt(b*sec(d*x + c) + a)/(b^3*sec(d*x + c)^3 + 3*a*b^2*sec(d*x
+ c)^2 + 3*a^2*b*sec(d*x + c) + a^3), x)

Sympy [F]

\[ \int \frac {\sec ^2(c+d x) \left (B \sec (c+d x)+C \sec ^2(c+d x)\right )}{(a+b \sec (c+d x))^{5/2}} \, dx=\int \frac {\left (B + C \sec {\left (c + d x \right )}\right ) \sec ^{3}{\left (c + d x \right )}}{\left (a + b \sec {\left (c + d x \right )}\right )^{\frac {5}{2}}}\, dx \]

[In]

integrate(sec(d*x+c)**2*(B*sec(d*x+c)+C*sec(d*x+c)**2)/(a+b*sec(d*x+c))**(5/2),x)

[Out]

Integral((B + C*sec(c + d*x))*sec(c + d*x)**3/(a + b*sec(c + d*x))**(5/2), x)

Maxima [F(-1)]

Timed out. \[ \int \frac {\sec ^2(c+d x) \left (B \sec (c+d x)+C \sec ^2(c+d x)\right )}{(a+b \sec (c+d x))^{5/2}} \, dx=\text {Timed out} \]

[In]

integrate(sec(d*x+c)^2*(B*sec(d*x+c)+C*sec(d*x+c)^2)/(a+b*sec(d*x+c))^(5/2),x, algorithm="maxima")

[Out]

Timed out

Giac [F]

\[ \int \frac {\sec ^2(c+d x) \left (B \sec (c+d x)+C \sec ^2(c+d x)\right )}{(a+b \sec (c+d x))^{5/2}} \, dx=\int { \frac {{\left (C \sec \left (d x + c\right )^{2} + B \sec \left (d x + c\right )\right )} \sec \left (d x + c\right )^{2}}{{\left (b \sec \left (d x + c\right ) + a\right )}^{\frac {5}{2}}} \,d x } \]

[In]

integrate(sec(d*x+c)^2*(B*sec(d*x+c)+C*sec(d*x+c)^2)/(a+b*sec(d*x+c))^(5/2),x, algorithm="giac")

[Out]

integrate((C*sec(d*x + c)^2 + B*sec(d*x + c))*sec(d*x + c)^2/(b*sec(d*x + c) + a)^(5/2), x)

Mupad [F(-1)]

Timed out. \[ \int \frac {\sec ^2(c+d x) \left (B \sec (c+d x)+C \sec ^2(c+d x)\right )}{(a+b \sec (c+d x))^{5/2}} \, dx=\int \frac {\frac {B}{\cos \left (c+d\,x\right )}+\frac {C}{{\cos \left (c+d\,x\right )}^2}}{{\cos \left (c+d\,x\right )}^2\,{\left (a+\frac {b}{\cos \left (c+d\,x\right )}\right )}^{5/2}} \,d x \]

[In]

int((B/cos(c + d*x) + C/cos(c + d*x)^2)/(cos(c + d*x)^2*(a + b/cos(c + d*x))^(5/2)),x)

[Out]

int((B/cos(c + d*x) + C/cos(c + d*x)^2)/(cos(c + d*x)^2*(a + b/cos(c + d*x))^(5/2)), x)